Bringing Transparency to Predictive Analytics: A Systematic Comparison of Predictive Modeling Methods in Higher Education

Colleges have increasingly turned to predictive analytics to target at-risk students for additional support. Most of the predictive analytic applications in higher education are proprietary, with private companies offering little transparency about their underlying models. We address this lack of tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AERA open 2021, Vol.7 (1)
Hauptverfasser: Bird, Kelli A., Castleman, Benjamin L., Mabel, Zachary, Song, Yifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colleges have increasingly turned to predictive analytics to target at-risk students for additional support. Most of the predictive analytic applications in higher education are proprietary, with private companies offering little transparency about their underlying models. We address this lack of transparency by systematically comparing two important dimensions: (1) different approaches to sample and variable construction and how these affect model accuracy and (2) how the selection of predictive modeling approaches, ranging from methods many institutional researchers would be familiar with to more complex machine learning methods, affects model performance and the stability of predicted scores. The relative ranking of students’ predicted probability of completing college varies substantially across modeling approaches. While we observe substantial gains in performance from models trained on a sample structured to represent the typical enrollment spells of students and with a robust set of predictors, we observe similar performance between the simplest and the most complex models.
ISSN:2332-8584
2332-8584
DOI:10.1177/23328584211037630