Characterization of Probability Distributions via Functional Equations of Power-Mixture Type
We study power-mixture type functional equations in terms of Laplace–Stieltjes transforms of probability distributions on the right half-line [0,∞). These equations arise when studying distributional equations of the type Z=dX+TZ, where the random variable T≥0 has known distribution, while the distr...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-02, Vol.9 (3), p.271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study power-mixture type functional equations in terms of Laplace–Stieltjes transforms of probability distributions on the right half-line [0,∞). These equations arise when studying distributional equations of the type Z=dX+TZ, where the random variable T≥0 has known distribution, while the distribution of the random variable Z≥0 is a transformation of that of X≥0, and we want to find the distribution of X. We provide necessary and sufficient conditions for such functional equations to have unique solutions. The uniqueness is equivalent to a characterization property of a probability distribution. We present results that are either new or extend and improve previous results about functional equations of compound-exponential and compound-Poisson types. In particular, we give another affirmative answer to a question posed by J. Pitman and M. Yor in 2003. We provide explicit illustrative examples and deal with related topics. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9030271 |