Construction of S(3) (2, 3)-Designs of Any Index

Let H(3) be a uniform hypergraph of rank 3. A hyperstar S(3)(2,3) of centre C={x,y} is a 3-uniform hypergraph with three hyperedges, all having the centre C={x,y} in common, with x and y of degree 3 and the remaining vertices of degree 1. In this paper, we determine the spectrum of S(3)(2,3)-designs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-07, Vol.12 (13), p.1968
Hauptverfasser: Causa, Antonio, Gionfriddo, Mario, Guardo, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H(3) be a uniform hypergraph of rank 3. A hyperstar S(3)(2,3) of centre C={x,y} is a 3-uniform hypergraph with three hyperedges, all having the centre C={x,y} in common, with x and y of degree 3 and the remaining vertices of degree 1. In this paper, we determine the spectrum of S(3)(2,3)-designs for any index λ.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12131968