Construction of S(3) (2, 3)-Designs of Any Index
Let H(3) be a uniform hypergraph of rank 3. A hyperstar S(3)(2,3) of centre C={x,y} is a 3-uniform hypergraph with three hyperedges, all having the centre C={x,y} in common, with x and y of degree 3 and the remaining vertices of degree 1. In this paper, we determine the spectrum of S(3)(2,3)-designs...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-07, Vol.12 (13), p.1968 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H(3) be a uniform hypergraph of rank 3. A hyperstar S(3)(2,3) of centre C={x,y} is a 3-uniform hypergraph with three hyperedges, all having the centre C={x,y} in common, with x and y of degree 3 and the remaining vertices of degree 1. In this paper, we determine the spectrum of S(3)(2,3)-designs for any index λ. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12131968 |