Core-Shell Nano-Antenna Configurations for Array Formation with More Stability Having Conventional and Non-Conventional Directivity and Propagation Behavior

The enhancement of optical characteristics at optical frequencies deviates with the choice of the arrangement of core-shell nanoparticles and their environment. Likewise, the arrangements of core-shell nanoparticles in the air over a substrate or in liquid solution makes them unstable in the atmosph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-01, Vol.11 (1), p.99
Hauptverfasser: Hayat, Qaisar, Geng, Junping, Liang, Xianling, Jin, Ronghong, Ur Rehman, Sami, He, Chong, Wu, Haobo, Nawaz, Hamza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The enhancement of optical characteristics at optical frequencies deviates with the choice of the arrangement of core-shell nanoparticles and their environment. Likewise, the arrangements of core-shell nanoparticles in the air over a substrate or in liquid solution makes them unstable in the atmosphere. This article suggests designing a configuration of an active spherical coated nanoparticle antenna and its extended array in the presence of a passive dielectric, which is proposed to be extendable to construct larger arrays. The issue of instability in the core-shell nanoantenna array models is solved here by inserting the passive dielectric. In addition to this, the inclusion of a dielectric in the array model reports a different directivity behaviour than the conventional array models. We found at first that the combination model of the active coated nanoparticle and passive sphere at the resonant frequency can excite a stronger field with a rotated polarization direction and a propagation direction different from the incident plane-wave. Furthermore, the extended 2D array also rotates the polarization direction and propagation direction for the vertical incident plane-wave. The radiation beam operates strong multipoles in the 2D array plane at resonant frequency (behaving non-conventionally). Nevertheless, it forms a clear main beam in the incident direction when it deviates from the resonance frequency (behaving conventionally). The proposed array model may have possible applications in nano-amplifiers, nano-sensors and other integrated optics.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11010099