Thermally Radiative Darcy–Forchheimer Flow of Cu/Ag Nanoliquid in Water Past a Heated Stretchy Sheet with Magnetic and Viscous Dissipation Impacts

This communication predominately discusses the rheological attributes of the Darcy–Forchheimer flow of a nanoliquid over a stretchy sheet with a magnetic impact. The present model considers the two diverse nanoparticles, such as Cu and Ag, and water as a base liquid. The heat equation accounts for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-01, Vol.15 (1), p.16
Hauptverfasser: Divya, S., Alessa, Nazek, Eswaramoorthi, S., Loganathan, Karuppusamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This communication predominately discusses the rheological attributes of the Darcy–Forchheimer flow of a nanoliquid over a stretchy sheet with a magnetic impact. The present model considers the two diverse nanoparticles, such as Cu and Ag, and water as a base liquid. The heat equation accounts for the consequences of thermal radiation and a nonlinear heat sink/source when evaluating heat transmission phenomena. The current mechanical system is represented by higher-order PDEs, which are then remodeled into nonlinear higher-order ODEs that employ appropriate symmetry variables. The current mathematical systems are numerically computed by implementing the bvp4c technique. The characteristic attitudes of the related pertinent factors on the non-dimensional profiles are sketched via the figures, tables, and charts. The analysis predicts that the speed of the nanoliquid particles becomes slower when there is more presence of a magnetic field and injection/suction parameters. The growing amount of radiation is also pointed out, and the Eckert number corresponds to enriching the thermal profile.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15010016