Hierarchically porous and single Zn atom-embedded carbon molecular sieves for H2 separations
Hierarchically porous materials containing sub-nm ultramicropores with molecular sieving abilities and microcavities with high gas diffusivity may realize energy-efficient membranes for gas separations. However, rationally designing and constructing such pores into large-area membranes enabling effi...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-07, Vol.15 (1), p.5688-8, Article 5688 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hierarchically porous materials containing sub-nm ultramicropores with molecular sieving abilities and microcavities with high gas diffusivity may realize energy-efficient membranes for gas separations. However, rationally designing and constructing such pores into large-area membranes enabling efficient H
2
separations remains challenging. Here, we report the synthesis and utilization of hybrid carbon molecular sieve membranes with well-controlled nano- and micro-pores and single zinc atoms and clusters well-dispersed inside the nanopores via the carbonization of supramolecular mixed matrix materials containing amorphous and crystalline zeolitic imidazolate frameworks. Carbonization temperature is used to fine-tune pore sizes, achieving ultrahigh selectivity for H
2
/CO
2
(130), H
2
/CH
4
(2900), H
2
/N
2
(880), and H
2
/C
2
H
6
(7900) with stability against water vapor and physical aging during a continuous 120-h test.
Supramolecular mixed matrix materials containing amorphous MOFs are carbonized to form hierarchically nanoporous carbon membranes, and the single metal atoms and clusters enhance H
2
separation properties for H
2
production, delivery, and recovery. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-49961-z |