Hierarchically porous and single Zn atom-embedded carbon molecular sieves for H2 separations

Hierarchically porous materials containing sub-nm ultramicropores with molecular sieving abilities and microcavities with high gas diffusivity may realize energy-efficient membranes for gas separations. However, rationally designing and constructing such pores into large-area membranes enabling effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-07, Vol.15 (1), p.5688-8, Article 5688
Hauptverfasser: Hu, Leiqing, Lee, Won-Il, Roy, Soumyabrata, Subramanian, Ashwanth, Kisslinger, Kim, Zhu, Lingxiang, Fan, Shouhong, Hwang, Sooyeon, Bui, Vinh T., Tran, Thien, Zhang, Gengyi, Ding, Yifu, Ajayan, Pulickel M., Nam, Chang-Yong, Lin, Haiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchically porous materials containing sub-nm ultramicropores with molecular sieving abilities and microcavities with high gas diffusivity may realize energy-efficient membranes for gas separations. However, rationally designing and constructing such pores into large-area membranes enabling efficient H 2 separations remains challenging. Here, we report the synthesis and utilization of hybrid carbon molecular sieve membranes with well-controlled nano- and micro-pores and single zinc atoms and clusters well-dispersed inside the nanopores via the carbonization of supramolecular mixed matrix materials containing amorphous and crystalline zeolitic imidazolate frameworks. Carbonization temperature is used to fine-tune pore sizes, achieving ultrahigh selectivity for H 2 /CO 2 (130), H 2 /CH 4 (2900), H 2 /N 2 (880), and H 2 /C 2 H 6 (7900) with stability against water vapor and physical aging during a continuous 120-h test. Supramolecular mixed matrix materials containing amorphous MOFs are carbonized to form hierarchically nanoporous carbon membranes, and the single metal atoms and clusters enhance H 2 separation properties for H 2 production, delivery, and recovery.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-49961-z