Strain rate concentration factor in comparison with stress concentration factor of a circumferential notch in a round bar specimen

High-speed tensile testing is now being recognized as a standard testing method for evaluating the impact strength of engineering materials. The impact speeds of Izod and Charpy tests cannot be controlled and therefore do not correspond to the real failure of real products. The brittle-ductile trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kikai Gakkai ronbunshū = Transactions of the Japan Society of Mechanical Engineers 2017, Vol.83(851), pp.17-00034-17-00034
Hauptverfasser: NODA, Nao-Aki, AKAGI, Daichi, SHEN, Yunong, TAKAKI, Rei, IKEDA, Tomohiro, SANO, Yoshikazu, TAKASE, Yasushi
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-speed tensile testing is now being recognized as a standard testing method for evaluating the impact strength of engineering materials. The impact speeds of Izod and Charpy tests cannot be controlled and therefore do not correspond to the real failure of real products. The brittle-ductile transition of structural materials is affected by the temperature and loading speed. In the high-speed tensile test, it is necessary to obtain the strain rate at the notch root accurately to understand the effect of impact load. For smooth specimens, the strain rate can be determined from the tensile speed u/t and specimen length l as εsmooth = u/tl. For notched specimens, however, the strain rate at the notch root εnotch should be analyzed accurately. In this study, therefore, the strain rate concentration factor defined as Ktε = εnotch/εsmooth is studied with varying the notch geometry. To predict the strain rate concentration factor Ktε accurately, the relationship between Ktε and the stress concentration factor Kt* = σmax/σgross is investigated. Here, σgross is the remote tensile stress and P is the tensile load. It is found that the strain concentration factor Ktε can be estimeted from stress concentration factor Kt* when the relative notch depth 2t/D≦0.5 (t : notch depth, D : the specimen diameter).
ISSN:2187-9761
DOI:10.1299/transjsme.17-00034