Towards High-Performance AI4NP Applications on Modern GPU Platforms

The evolution of modern heterogeneous accelerators, such as GPUs, has significantly advanced the landscape of artificial intelligence (AI). There is a notable surge to adopt AI within the nuclear physics domain (AI4NP). While most AI4NP studies focus on feasibility analysis, our attention is directe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mei, Xinxin, Brei, Nathan, Lawrence, David
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of modern heterogeneous accelerators, such as GPUs, has significantly advanced the landscape of artificial intelligence (AI). There is a notable surge to adopt AI within the nuclear physics domain (AI4NP). While most AI4NP studies focus on feasibility analysis, our attention is directed towards evaluating their performance on contemporary GPUs that integrate tensor cores. We first benchmark the throughput of hyperparameterized multi-layer perceptron (MLP) models. We then examine the performance of an AI4NP application: Hydra. We assess the performance gain and accuracy loss caused by the tensor cores for low-precision floating-point operations. Our experiments encompass the PyTorch and TensorFlow Keras frameworks on NVIDIA’s T4 and A100 GPUs. We explore the behavior of different GPU hardware platforms and AI software tools. This study can be a valuable resource for guiding the performance optimization of larger-scale deployments of AI4NP applications.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/202429511023