Simulation of Mechanical and Thermal Loads and Microtexturing of Ceramic Cutting Inserts in Turning a Nickel-Based Alloy

This paper is devoted to the problem of wear resistance in square Si3N4 ceramic cutting inserts, which exhibit high hardness and strength, in combination with brittleness, and are subject to increased mechanical and thermal loads in machining super alloys for aviation purposes (e.g., a nickel-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2023-07, Vol.13 (7), p.1241
Hauptverfasser: Volosova, Marina A., Okunkova, Anna A., Hamdy, Khaled, Malakhinsky, Alexander P., Gkhashim, Khasan I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the problem of wear resistance in square Si3N4 ceramic cutting inserts, which exhibit high hardness and strength, in combination with brittleness, and are subject to increased mechanical and thermal loads in machining super alloys for aviation purposes (e.g., a nickel-based alloy of Inconel 718 type). Microtextures were proposed to reduce the intensity of the contact loads on the pad between the cutting edge and the workpiece. The simulation of the mechanical and thermal loads demonstrated the superior ability of the faces with the preformed microgrooves (125 µm in width) compared to microwells (ø100 µm). The tense state was 4.97 times less, and deformations were 2.96 times fewer. The microtextures hamper the development of thermal fields at 900 °C. Two types of microtextures (210 µm-wide microgrooves and microwells 80 µm in diameter) were produced on the rake faces of the cutting inserts via an innovative and integrated approach (the electrical discharge machining of dielectrics using a multifunctional electro-conductive assisted and wear-resistant TiN coating and TiO2 powder mixed suspension). The TiN coating was deposited via magnetron vacuum plasma sputtering (95%N2/5%Ar). The failure criterion in turning was 400 µm. An increase of 30% in tool wear resistance was demonstrated.
ISSN:2075-4701
2075-4701
DOI:10.3390/met13071241