Improving efficiency of analysis jobs in CMS

Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2019-01, Vol.214, p.3006
Hauptverfasser: Ivanov, Todor Trendafilov, Belforte, Stefano, Wolf, Matthias, Mascheroni, Marco, Yzquierdo, Antonio Pérez-Calero, Letts, James, Hernández, José M., Cristella, Leonardo, Ciangottini, Diego, Balcas, Justas, Woodard, Anna Elizabeth, Anampa, Kenyi Hurtado, Bockelman, Brian Paul, Foyo, Diego Davila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hundreds of physicists analyze data collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider using the CMS Remote Analysis Builder and the CMS global pool to exploit the resources of the Worldwide LHC Computing Grid. Efficient use of such an extensive and expensive resource is crucial. At the same time, the CMS collaboration is committed to minimizing time to insight for every scientist, by pushing for fewer possible access restrictions to the full data sample and supports the free choice of applications to run on the computing resources. Supporting such variety of workflows while preserving efficient resource usage poses special challenges. In this paper we report on three complementary approaches adopted in CMS to improve the scheduling efficiency of user analysis jobs: automatic job splitting, automated run time estimates and automated site selection for jobs.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201921403006