Ketorolac modulates Rac-1/HIF-1α/DDX3/β-catenin signalling via a tumor suppressor prostate apoptosis response-4 (Par-4) in renal cell carcinoma

Renal cell carcinoma (RCC) is the most difficult-to-treat form of kidney cancer with a median 5-year survival of 10% under metastatic setting. In RCC, although cytoreductive nephrectomy is common, approximately 20–30% of patients will develop recurrent cancer after surgery, which highlights the need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-04, Vol.13 (1), p.5659-5659, Article 5659
Hauptverfasser: Sonawane, Vinay, Ghosalkar, Jeevan, Achrekar, Swati, Joshi, Kalpana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renal cell carcinoma (RCC) is the most difficult-to-treat form of kidney cancer with a median 5-year survival of 10% under metastatic setting. In RCC, although cytoreductive nephrectomy is common, approximately 20–30% of patients will develop recurrent cancer after surgery, which highlights the need for an effective therapy. Rho-GTPases viz, Rac-1 and Cdc42 are the central regulators of cancer cell migration and invasion and thus metastasis in multiple cancer types. Hence, we elucidated the role of Ketorolac, a modulator Rho-GTPases against RCC through potentiation of tumor suppressor Par-4. The effect of Ketorolac alone and in combination on proliferation, apoptosis, cell-cycle progression, migration, tumor inhibition and their related markers were studied. Moreover, Ketorolac’s impact on metastasis by influencing Rac-1/HIF-1α/DDX3/β-catenin signalling was studied with respect to its ability to modulate the expression of tumor suppressor Par-4, and this mechanism was confirmed by siRNA knockdown studies. Ketorolac induced cytotoxicity in a panel of renal cells including patient derived tumor cells with IC 50 2.8 to 9.02 mM and 0.28 to 3.8 mM in monolayer and anchorage independent clonogenic assays respectively. Ketorolac caused significant down regulation of proliferation (Ki-67, Cyclin D1, pRB and DDX3), migration/invasion (Rac-1, Cdc42, and Tiam1), and angiogenesis (HIF-1α and VEGF) markers as studied by gene and protein expression. Moreover, it caused a significant upregulation of tumor suppressor Par-4 known to be downregulated in RCC. This mechanism was further confirmed by using siRNA knockdown studies where we could demonstrate a negative relation between the expression of Par-4 and Rac-1/Cdc42. Importantly, Ketorolac alone and in combination with Sunitinib showed tumor growth inhibition (TGI) of 73% and 86% respectively in xenograft model. This anti-tumor activity was further corroborated by down regulation of Rac-1/Cdc42/HIF-1α/DDX3/β-catenin signalling. This is the first report which implicates the role of Ketorolac against RCC by acting as a small molecule secretagogue causing upregulation of Par-4 in autocrine and paracrine manner. Consequently, these findings suggest that Par-4 can serve as a valuable therapeutic target and a prognostic marker for the treatment of RCC.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-32627-z