Graph neural network for integrated water network partitioning and dynamic district metered areas

Water distribution systems (WDSs) are used to transmit and distribute water resources in cities. Water distribution networks (WDNs) are partitioned into district metered areas (DMAs) by water network partitioning (WNP), which can be used for leak control, pollution monitoring, and pressure optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-11, Vol.12 (1), p.19466-19466, Article 19466
Hauptverfasser: Fu, Minglei, Rong, Kezhen, Huang, Yangyang, Zhang, Ming, Zheng, Lejing, Zheng, Jianfeng, Falah, Mayadah W., Yaseen, Zaher Mundher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water distribution systems (WDSs) are used to transmit and distribute water resources in cities. Water distribution networks (WDNs) are partitioned into district metered areas (DMAs) by water network partitioning (WNP), which can be used for leak control, pollution monitoring, and pressure optimization in WDS management. In order to overcome the limitations of optimal search range and the decrease of recovery ability caused by two-step WNP and fixed DMAs in previous studies, this study developed a new method combining a graph neural network to realize integrated WNP and dynamic DMAs to optimize WDS management and respond to emergencies. The proposed method was tested in a practical case study; the results showed that good hydraulic performance of the WDN was maintained and that dynamic DMAs demonstrated excellent stability in emergency situations, which proves the effectiveness of the method in WNP.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-24201-w