An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem

In real manufacturing environments, the number of automatic guided vehicles (AGV) is limited. Therefore, the scheduling problem that considers a limited number of AGVs is much nearer to real production and very important. In this paper, we studied the flexible job shop scheduling problem with a limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-04, Vol.23 (8), p.3815
Hauptverfasser: Meng, Leilei, Cheng, Weiyao, Zhang, Biao, Zou, Wenqiang, Fang, Weikang, Duan, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In real manufacturing environments, the number of automatic guided vehicles (AGV) is limited. Therefore, the scheduling problem that considers a limited number of AGVs is much nearer to real production and very important. In this paper, we studied the flexible job shop scheduling problem with a limited number of AGVs (FJSP-AGV) and propose an improved genetic algorithm (IGA) to minimize makespan. Compared with the classical genetic algorithm, a population diversity check method was specifically designed in IGA. To evaluate the effectiveness and efficiency of IGA, it was compared with the state-of-the-art algorithms for solving five sets of benchmark instances. Experimental results show that the proposed IGA outperforms the state-of-the-art algorithms. More importantly, the current best solutions of 34 benchmark instances of four data sets were updated.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23083815