Simulation study on the interaction between the battery module and busbar under typical driving conditions of electric vehicles

Accurate simulation of the battery thermoelectric coupling characteristics is the key to the thermal design and thermal management. As the electrically connected component between the battery electrodes, the heat production and heat transfer of the busbars have a significant impact on the battery th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Case studies in thermal engineering 2023-05, Vol.45, p.103006, Article 103006
Hauptverfasser: Chen, Haopeng, Zhang, Tianshi, Hua, Yang, Gao, Qing, Han, Zhiwu, Yang, Kaiqiao, Xu, Yihuai, Liu, Xiaoyan, Xu, Xiaoyu, Wang, Shengshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate simulation of the battery thermoelectric coupling characteristics is the key to the thermal design and thermal management. As the electrically connected component between the battery electrodes, the heat production and heat transfer of the busbars have a significant impact on the battery thermoelectric behavior. A small number of battery thermal management studies have begun to model busbars recently, but the thickness, length, and material of the busbars are diverse. There is a lack of perfect simulation analysis and optimization methods. There is an urgent need to conduct in-depth research on the influence of characteristic parameters of the busbars on the battery thermoelectric behavior. Based on the MSMD-NTGK model, this paper investigates the influence of the thickness, length, and material of the busbars on the battery thermoelectric behavior without considering the economic cost and differences in the battery structure design. In this paper, a simulation analysis method and an ideal improvement solution for the design of the busbars are proposed. This paper compares the changes in the battery thermal behavior before and after the improvement of the busbars under the constant-rate discharge process, FTP75 condition, NEDC condition and WLTC condition respectively. This study can improve the realism of the battery thermal behavior simulation, provide a reliable simulation analysis method and reference basis for the industrial design and optimization of the busbars, and further improve the reliability of the subsequent battery thermal management simulation.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2023.103006