Enhance the AI Virtual System Accuracy with Novel Hand Gesture Recognition Algorithm Comparing to Convolutional Neural Network

The objective of this study is to enhance the precision of AI virtual systems by implementing Novel Hand Gesture Recognition techniques in comparison to Convolutional Neural Network. Materials and Methods: To recognise hand motions, a Convolutional Neural Network with distinct training and testing s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2024-01, Vol.491, p.4022
Hauptverfasser: Sadiq, Shaik, Saraswathi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study is to enhance the precision of AI virtual systems by implementing Novel Hand Gesture Recognition techniques in comparison to Convolutional Neural Network. Materials and Methods: To recognise hand motions, a Convolutional Neural Network with distinct training and testing stages is utilized. The average Gpower for the test is between 0.05 and 0.85, or around 85%. Sample size is determined as 27,455 for each group using G Power 3.1 software (G Power setting parameters: α=0.05 and power=0.85). Results and Discussion: Novel Hand gesture recognition 92.60% identifies between objects and boosts the observed accuracy with a statistically non-significant value of p=0.123 (p>0.05) in comparison to the convolutional neural network's 88.59%. Conclusion: Comparison of the Novel Hand gesture Recognition algorithm and Convolutional Neural Network in terms of performance that shows Hand gesture recognition has 91.62% with better accuracy.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202449104022