Feeding disruptions lead to a significant increase in disease modules in adult mice
Feeding disruption is closely linked to numerous diseases, yet the underlying molecular mechanisms remain an important but unresolved issue at the molecular level. We hypothesize that, at the network level, dietary disruptions can alter gene co-expression patterns, leading to an increase in disease-...
Gespeichert in:
Veröffentlicht in: | Heliyon 2025-01, Vol.11 (2), p.e41774, Article e41774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Feeding disruption is closely linked to numerous diseases, yet the underlying molecular mechanisms remain an important but unresolved issue at the molecular level. We hypothesize that, at the network level, dietary disruptions can alter gene co-expression patterns, leading to an increase in disease-associated modules, and thereby elevating the likelihood of disease occurrence. Here, we investigate this hypothesis using transcriptomic data from a large cohort of adult mice subjected to feeding disruptions. Our computational analysis indicates that altered feeding schedules significantly increase disease-related modules in adult mouse livers, well before aging and disease onset. Conversely, calorie restriction significantly reduces these disease modules. This provides a critical missing link between feeding disruption and the molecular mechanisms of disease. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2025.e41774 |