An Optimal Scheduling Method of Shared Energy Storage System Considering Distribution Network Operation Risk

Shared energy storage systems (SESS) have been gradually developed and applied to distribution networks (DN). There are electrical connections between SESSs and multiple DN nodes; SESSs could significantly improve the power restoration potential and reduce the power interruption cost during fault pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-03, Vol.16 (5), p.2411
Hauptverfasser: Chen, Jiahao, Sun, Bing, Zeng, Yuan, Jing, Ruipeng, Dong, Shimeng, Wang, Jingran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shared energy storage systems (SESS) have been gradually developed and applied to distribution networks (DN). There are electrical connections between SESSs and multiple DN nodes; SESSs could significantly improve the power restoration potential and reduce the power interruption cost during fault periods. Currently, a major challenge exists in terms of how to consider both the efficiency of the operation and the reliability cost when formulating the SESS scheduling scheme. A SESS optimal scheduling method that considers the DN operation risk is proposed in this paper. First, a multi-objective day-ahead scheduling model for SESS is developed, where the user’s interruption cost is regarded as the reliability cost and it is the product of the occurrence probability of the expected accident and the loss of power outage. Then, an island partition model with SESS was established in order to accurately calculate the reliability cost. Via the maximum island partition and island optimal rectification, the SESS was carefully integrated into the power restoration system. Furthermore, in order to minimize the comprehensive operation cost, an improved genetic algorithm for the island partition was designed to solve the complex SESS optimal scheduling model. Finally, a case study on the improved PG&E 69 bus system was analyzed. Moreover, we found that the DN’s comprehensive operation cost decreased by 6.6% using the proposed method.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16052411