Self-Calibratable Absolute Modular Rotary Encoder: Development and Experimental Research

Advanced microfabrication technologies have revolutionized the field of reflective encoders by integrating all necessary optical components and electronics into a miniature single-chip solution. Contemporary semiconductor sensors could operate at wide tolerance ranges that make them ideal for integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2024-09, Vol.15 (9), p.1130
Hauptverfasser: Gurauskis, Donatas, Marinkovic, Dragan, Mažeika, Dalius, Kilikevičius, Artūras
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced microfabrication technologies have revolutionized the field of reflective encoders by integrating all necessary optical components and electronics into a miniature single-chip solution. Contemporary semiconductor sensors could operate at wide tolerance ranges that make them ideal for integration into compact and lightweight modular encoder kit systems. However, in order to achieve the high accuracy of the operating encoder, precise mechanical installation is still needed. To overcome this issue and exploit the full potential of modern sensors, the self-calibratable absolute modular rotary encoder is developed. The equal division average (EDA) method by combining the angular position readings from multiple optical sensors is used to simplify the installation process and ensure the high accuracy of the system. The produced prototype encoder is experimentally tested vs. the reference encoder and the measurement deviations of using different numbers and arrangements of optical sensors are determined. The obtained results show encoder ability to handle the mounting errors and minimize the initial system deviation by more than 90%.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15091130