A Refined Shape Sensing Method for Skin Antenna Structure Based on Inverse Finite Element Method
An important issue in the existing inverse finite element method (iFEM) is that reconstruction accuracy cannot satisfy the analytical demand for the flexible structure. To address this issue, this paper presents a multi-nodes iFEM that reconstructs the displacement of structure based on surface meas...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-11, Vol.10 (21), p.7620 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important issue in the existing inverse finite element method (iFEM) is that reconstruction accuracy cannot satisfy the analytical demand for the flexible structure. To address this issue, this paper presents a multi-nodes iFEM that reconstructs the displacement of structure based on surface measurement strains in real time. Meanwhile, in light of the response characteristics of iFEM, an innovative interpolation method is adapted to regenerate the full field deformation again. The proposed method substantially expands the size of inverse elements, which reduces the numbers of sensors and improves the reconstruction accuracy. The effectiveness of the method to predict displacement is verified by a flexible antenna panel subjected typical boundary conditions. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10217620 |