Linear effects of glucose levels on voice fundamental frequency in type 2 diabetes and individuals with normoglycemia
Glucose levels in the body have been hypothesized to affect voice characteristics. One of the primary justifications for voice changes are due to Hooke’s law, in which a variation in the tension, mass, or length of the vocal folds, mediated by the body’s glucose levels, results in an alteration in t...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-08, Vol.14 (1), p.19012-9, Article 19012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glucose levels in the body have been hypothesized to affect voice characteristics. One of the primary justifications for voice changes are due to Hooke’s law, in which a variation in the tension, mass, or length of the vocal folds, mediated by the body’s glucose levels, results in an alteration in their vibrational frequency. To explore this hypothesis, 505 participants were fitted with a continuous glucose monitor (CGM) and instructed to record their voice using a custom mobile application up to six times daily for 2 weeks. Glucose values from CGM were paired to voice recordings to create a sampled dataset that closely resembled the glucose profile of the comprehensive CGM dataset. Glucose levels and fundamental frequency (F0) had a significant positive association within an individual, and a 1 mg/dL increase in CGM recorded glucose corresponded to a 0.02 Hz increase in F0 (CI 0.01–0.03 Hz,
P
|
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-69620-z |