Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.3346-3346, Article 3346
Hauptverfasser: Wilhelm, Mathias, Zolg, Daniel P., Graber, Michael, Gessulat, Siegfried, Schmidt, Tobias, Schnatbaum, Karsten, Schwencke-Westphal, Celina, Seifert, Philipp, de Andrade Krätzig, Niklas, Zerweck, Johannes, Knaute, Tobias, Bräunlein, Eva, Samaras, Patroklos, Lautenbacher, Ludwig, Klaeger, Susan, Wenschuh, Holger, Rad, Roland, Delanghe, Bernard, Huhmer, Andreas, Carr, Steven A., Clauser, Karl R., Krackhardt, Angela M., Reimer, Ulf, Kuster, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows. The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23713-9