Yield and chemical composition of soybean seed under different irrigation regimes in the Vojvodina region

The goal of the present research is to determine an effective sprinkler irrigation strategy for soybean [Glycine max (L.) Merr.] in temperate climate conditions, in order to maximize yields and seed quality. A three-year field experiment with four different irrigation treatments was conducted on Cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, soil and environment soil and environment, 2017-01, Vol.63 (1), p.34-39
Hauptverfasser: KRESOVIĆ, Branka, GAJIC, Bosko Andrija, TAPANAROVA, Angelina, DUGALIĆ, Goran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of the present research is to determine an effective sprinkler irrigation strategy for soybean [Glycine max (L.) Merr.] in temperate climate conditions, in order to maximize yields and seed quality. A three-year field experiment with four different irrigation treatments was conducted on Calcic Chernozem in the Vojvodina region of Serbia. The irrigation regimes included: no irrigation; full irrigation (I100); and two deficit irrigation treatments – 65% of I100 (I65) and 40% of I100. The irrigation treatments generally had a statistically significant effect on the increase of soybean yield and protein content. Irrigation did not have a significant effect on the oil content. In general, irrigation increased K, P, Mg, Mn, Cu, Zn and B concentrations and decreased Ca and Fe concentrations in soybean seed. The results show that irrigation with the largest amount of water (treatment I100) provided no potential benefit in terms of soybean yield and chemical composition. Treatment I65, which exhibited the most favourable watering conditions, is the best choice to maximize yield and ensure a good chemical composition of soybean under these agroecological conditions.
ISSN:1214-1178
1805-9368
DOI:10.17221/673/2016-PSE