Convex radial solutions for Monge-Ampère equations involving the gradient
This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $: $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $ where $ B: = \{x\in \mathbb R^N: |x...
Gespeichert in:
Veröffentlicht in: | Mathematical Biosciences and Engineering 2023-11, Vol.20 (12), p.20959-20970 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $: $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $ where $ B: = \{x\in \mathbb R^N: |x| < 1\} $. The fixed point index theory is employed in the proofs of the main results. |
---|---|
ISSN: | 1551-0018 |
DOI: | 10.3934/mbe.2023927 |