Convex radial solutions for Monge-Ampère equations involving the gradient

This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $: $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $ where $ B: = \{x\in \mathbb R^N: |x...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Biosciences and Engineering 2023-11, Vol.20 (12), p.20959-20970
1. Verfasser: Yang, Zhilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $: $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $ where $ B: = \{x\in \mathbb R^N: |x| < 1\} $. The fixed point index theory is employed in the proofs of the main results.
ISSN:1551-0018
DOI:10.3934/mbe.2023927