Measurement of Food Colour in Lab Units from RGB Digital Image Using Least Squares Support Vector Machine Regression

The aim of this work is to evaluate the potential of least squares support vector machine (LS-SVM) regression to develop an efficient method to measure the colour of food materials in L*a*b* units by means of a computer vision systems (CVS). A laboratory CVS, based on colour digital camera (CDC), wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural engineering (Pisa, Italy) Italy), 2015-01, Vol.46 (4), p.138-143
Hauptverfasser: Romaniello, Roberto, Leone, Alessandro, Peri, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work is to evaluate the potential of least squares support vector machine (LS-SVM) regression to develop an efficient method to measure the colour of food materials in L*a*b* units by means of a computer vision systems (CVS). A laboratory CVS, based on colour digital camera (CDC), was implemented and three LS-SVM models were trained and validated, one for each output variables (L*, a*, and b*) required by this problem, using the RGB signals generated by the CDC as input variables to these models. The colour target-based approach was used to camera characterization and a standard reference target of 242 colour samples was acquired using the CVS and a colorimeter. This data set was split in two sets of equal sizes, for training and validating the LS-SVM models. An effective two-stage grid search process on the parameters space was performed in MATLAB to tune the regularization parameters γ and the kernel parameters σ² of the three LS-SVM models. A 3-8-3 multilayer feed-forward neural network (MFNN), according to the research conducted by León et al. (2006), was also trained in order to compare its performance with those of LS-SVM models. The LS-SVM models developed in this research have been shown better generalization capability then the MFNN, allowed to obtain high correlations between L*a*b* data acquired using the colorimeter and the corresponding data obtained by transformation of the RGB data acquired by the CVS. In particular, for the validation set, R² values equal to 0.9989, 0.9987, and 0.9994 for L*, a* and b* parameters were obtained. The root mean square error values were 0.6443, 0.3226, and 0.2702 for L*, a*, and b* respectively, and the average of colour differences ΔEₐb was 0.8232±0.5033 units. Thus, LS-SVM regression seems to be a useful tool to measurement of food colour using a low cost CVS.
ISSN:2239-6268
1974-7071
2239-6268
DOI:10.4081/jae.2015.482