Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

Mice lacking Foxp3+ regulatory T (Treg) cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal infla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC gastroenterology 2012-07, Vol.12 (1), p.97-97, Article 97
Hauptverfasser: Boehm, Franziska, Martin, Maria, Kesselring, Rebecca, Schiechl, Gabriela, Geissler, Edward K, Schlitt, Hans-Jürgen, Fichtner-Feigl, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mice lacking Foxp3+ regulatory T (Treg) cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Foxp3-GFP-DTR (human diphtheria toxin receptor) C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin). The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag-/- C57BL/6 mice and the acute DSS-colitis model. Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag-/- C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.
ISSN:1471-230X
1471-230X
DOI:10.1186/1471-230X-12-97