Microglial roles in Alzheimer's disease: An agent‐based model to elucidate microglial spatiotemporal response to beta‐amyloid

Alzheimer's disease (AD) is characterized by beta‐amyloid (Aβ) plaques in the brain and widespread neuronal damage. Because of the high drug attrition rates in AD, there is increased interest in characterizing neuroimmune responses to Aβ plaques. In response to AD pathology, microglia are innat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CPT: Pharmacometrics & Systems Pharmacology 2024-03, Vol.13 (3), p.449-463
Hauptverfasser: Weathered, Catherine, Bardehle, Sophia, Yoon, Choya, Kumar, Niyanta, Leyns, Cheryl E. G., Kennedy, Matthew E., Bloomingdale, Peter, Pienaar, Elsje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer's disease (AD) is characterized by beta‐amyloid (Aβ) plaques in the brain and widespread neuronal damage. Because of the high drug attrition rates in AD, there is increased interest in characterizing neuroimmune responses to Aβ plaques. In response to AD pathology, microglia are innate phagocytotic immune cells that transition into a neuroprotective state and form barriers around plaques. We seek to understand the role of microglia in modifying Aβ dynamics and barrier formation. To quantify the influence of individual microglia behaviors (activation, chemotaxis, phagocytosis, and proliferation) on plaque size and barrier coverage, we developed an agent‐based model to characterize the spatiotemporal interactions between microglia and Aβ. Our model qualitatively reproduces mouse data trends where the fraction of microglia coverage decreases as plaques become larger. In our model, the time to microglial arrival at the plaque boundary is significantly negatively correlated (p 
ISSN:2163-8306
2163-8306
DOI:10.1002/psp4.13095