A novel, benchtop model for quantitative analysis of resistance in ventricular catheters
The mechanisms of catheter obstruction are still poorly understood, but the literature suggests that resistance to fluid flow plays a significant role. We developed and assessed a gravity-driven device that measures flow through ventricular catheters. We used this device to quantitatively analyze th...
Gespeichert in:
Veröffentlicht in: | PloS one 2023-11, Vol.18 (11), p.e0294811-e0294811 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanisms of catheter obstruction are still poorly understood, but the literature suggests that resistance to fluid flow plays a significant role. We developed and assessed a gravity-driven device that measures flow through ventricular catheters. We used this device to quantitatively analyze the resistances of unused ventricular catheters used in the treatment of hydrocephalus; failed hydrocephalus catheters from our catheter biorepository were also evaluated quantitatively.
Catheters of three manufacturing companies were inserted into the benchtop model, which records time, flow rate, and pressure data using sensors. The relative resistances of catheters across six design models were evaluated. Experiments were performed to evaluate changes in the relative resistance of a catheter when the catheter's holes were progressively closed. The relative resistance of explanted catheters from our catheter biorepository was also measured.
Experimental results showed significant differences (P |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0294811 |