Building durable aqueous K-ion capacitors based on MXene family
Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction. In this work, three different typical MXene electrodes, i.e., Nb2C, Ti2C, and Ti3C2 were individually in...
Gespeichert in:
Veröffentlicht in: | Nano Research Energy 2022-06, Vol.1 (1), p.e9120002 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Obtaining stable aqueous K-ion capacitors is still challenging due to the cathode materials tended to structurally collapse after long-term cycling during large-radius K-ion insertion/extraction. In this work, three different typical MXene electrodes, i.e., Nb2C, Ti2C, and Ti3C2 were individually investigated upon their electrochemical behaviors for potassium-ion (K-ion) storage. All these MXene materials exhibited pseudocapacitive-dominated behaviors, fast kinetics, and durable K-ion storage, delivering superior performance compared with other K-ion host materials. According to the experimental results, it could be ascribed to the intrinsically large interlayer distance for K-ion transport and the superb structural stability of MXene even subjected to long-term potassiation/depotassiation process. |
---|---|
ISSN: | 2791-0091 2790-8119 |
DOI: | 10.26599/NRE.2022.9120002 |