Effects of interactions between feeding practices, animal health and farm infrastructure on technical, economic and environmental performances of a pig-fattening unit
European pig production faces economic and environmental challenges. Modelling can help farmers simulate and understand how changes in their management practices affect the efficiency of their production system. We developed an individual-based model of a pig-fattening unit that considers individual...
Gespeichert in:
Veröffentlicht in: | Animal (Cambridge, England) England), 2020-08, Vol.14 (S2), p.s348-s359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | European pig production faces economic and environmental challenges. Modelling can help farmers simulate and understand how changes in their management practices affect the efficiency of their production system. We developed an individual-based model of a pig-fattening unit that considers individual variability in performance among pigs, farmers’ feeding practices and animal management and estimates environmental impacts (using life cycle assessment) and economic results of the unit. We previously demonstrated that this model provides reliable estimates of farm performance for different combinations of management practices, pig types and building characteristics. The objectives of this study were to quantify how interactions between feeding practices and animal management influence fattening unit results in healthy or impaired health conditions using the model. A virtual experiment was designed to evaluate effects of interactions between feeding practices, health status of the pig herd and infrastructure constraints on the technical performance, economic results and environmental impacts of the unit. The virtual experiment consisted of 96 scenarios, which combined chosen values of 6 input parameters of the model: batch interval (35 days and 7 days), use or non-use of a buffer room to manage the lightest pigs, feed rationing (ad libitum and restricted) and sequence plans (two-phase (2P), daily-phase (DP)), scale at which the feeding plan is applied (i.e. room, pen and individual) and health status of the pig herd (i.e. healthy v. impaired). Variance analysis was used to test effects of the factors in these 96 scenarios, and multivariate data analyses were used to classify the scenarios. Healthy populations obtained on average higher economic results (e.g. gross margin of 11.20 v. 1.50 €/pig) and lower environmental impacts (e.g. 2.24 v. 2.38 kg CO2-eq/kg pig live weight gain) than the population with impaired health. With 35 days batch interval and DP feeding, populations with impaired health reached gross margin similar to healthy populations with 2P ad libitum feeding and 7 days batch interval. Restricted, DP and individual feeding plans improved the economic and environmental performances of the unit for both health statuses. This study highlighted that health status of the pig herd is the main factor that affects technical, economic and environmental performances of a pig-fattening unit, and that adequate feeding strategies and animal management can com |
---|---|
ISSN: | 1751-7311 1751-732X |
DOI: | 10.1017/S1751731120000300 |