Modelación matemática en estudio de agro-cadenas: una revisión de literatura
El sector agrícola es el eje fundamental que mueve la economía del mundo, permite la generación de productos agrícolas y pecuarios para el abastecimiento de pequeñas y grandes ciudades. En los países subdesarrollados es necesaria la participación de la industria y la academia para el fortalecimiento...
Gespeichert in:
Veröffentlicht in: | Revista politécnica (Bogotá. En línea) 2020-06, Vol.16 (31), p.110-137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | El sector agrícola es el eje fundamental que mueve la economía del mundo, permite la generación de productos agrícolas y pecuarios para el abastecimiento de pequeñas y grandes ciudades. En los países subdesarrollados es necesaria la participación de la industria y la academia para el fortalecimiento de los sistemas productivos, esto a partir de la inyección de tecnología, así como la transferencia y apropiación de conocimiento en el sector. Un enfoque usado para el fortalecimiento del sector, es el estudio de las cadenas de suministro agrícolas (agro-cadenas) a partir de la modelación matemática, la cual permite el tratamiento de datos y facilita la toma de decisiones de orden estratégico, táctico y/o operativo. En el presente trabajo se realizó una revisión de literatura sobre la aplicación de la modelación matemática en el estudio de las Agro-cadenas durante los últimos 20 años. Se concluye del estudio que, existe un interés bastante grande por la comunidad académico-científica por fortalecer el sector agrícola en diferentes países como Estados Unidos, Brasil, india y Holanda entre otros. En el 36% de los trabajos consultados se emplean modelos de simulación estocástica, permitiendo abordar problemas complejos que involucran incertidumbre en con comportamiento de los datos. Además, en el 70% de los trabajos consultados, se utilizan modelos heurísticos para resolver problemas de diseño y distribución en agrocadenas, y el 30% restante requiere el uso de meta-heurísticas porque requieren resolver problemas con múltiples respuestas dada la complejidad de los datos. La modelación matemática se ha convertido en una herramienta de gran utilidad para la solución de problemas latentes en la agro-cadenas, facilita el tratamiento de datos y la toma de decisiones complejas, principalmente durante el diseño de cadena, el abastecimiento de producto y control de costos, tiempos de entrega e impactos ambientales, entre otras variables importantes. |
---|---|
ISSN: | 1900-2351 2256-5353 |
DOI: | 10.33571/rpolitec.v16n31a9 |