Remyelination protects neurons from DLK-mediated neurodegeneration

Chronic demyelination and oligodendrocyte loss deprive neurons of crucial support. It is the degeneration of neurons and their connections that drives progressive disability in demyelinating disease. However, whether chronic demyelination triggers neurodegeneration and how it may do so remain unclea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-10, Vol.15 (1), p.9148-19, Article 9148
Hauptverfasser: Duncan, Greg J., Ingram, Sam D., Emberley, Katie, Hill, Jo, Cordano, Christian, Abdelhak, Ahmed, McCane, Michael, Jenks, Jennifer E., Jabassini, Nora, Ananth, Kirtana, Ferrara, Skylar J., Stedelin, Brittany, Sivyer, Benjamin, Aicher, Sue A., Scanlan, Thomas S., Watkins, Trent A., Mishra, Anusha, Nelson, Jonathan W., Green, Ari J., Emery, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic demyelination and oligodendrocyte loss deprive neurons of crucial support. It is the degeneration of neurons and their connections that drives progressive disability in demyelinating disease. However, whether chronic demyelination triggers neurodegeneration and how it may do so remain unclear. We characterize two genetic mouse models of inducible demyelination, one distinguished by effective remyelination and the other by remyelination failure and chronic demyelination. While both demyelinating lines feature axonal damage, mice with blocked remyelination have elevated neuronal apoptosis and altered microglial inflammation, whereas mice with efficient remyelination do not feature neuronal apoptosis and have improved functional recovery. Remyelination incapable mice show increased activation of kinases downstream of dual leucine zipper kinase (DLK) and phosphorylation of c-Jun in neuronal nuclei. Pharmacological inhibition or genetic disruption of DLK block c-Jun phosphorylation and the apoptosis of demyelinated neurons. Together, we demonstrate that remyelination is associated with neuroprotection and identify DLK inhibition as protective strategy for chronically demyelinated neurons. The mechanisms that trigger neurodegeneration in demyelinating disease are unclear. Here, the authors find that impaired remyelination induces a DLK-mediated loss of retinal ganglion cells (RGCs), and that efficient remyelination or DLK inhibition block RGC death.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-53429-5