Mechanisms underlying probucol-induced hERG-channel deficiency
The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (I Kr), which is important for cardiac repolarization. Reduction of I hERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhyt...
Gespeichert in:
Veröffentlicht in: | Drug design, development and therapy development and therapy, 2015-01, Vol.9 (default), p.3695-3704 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (I Kr), which is important for cardiac repolarization. Reduction of I hERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes) or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on I hERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity. |
---|---|
ISSN: | 1177-8881 1177-8881 |
DOI: | 10.2147/DDDT.S86724 |