The Curled Up Dimension in Quasicrystals
Most quasicrystals can be generated by the cut-and-project method from higher dimensional parent lattices. In doing so they lose the periodic order their parent lattice possess, replaced with aperiodic order, due to the irrationality of the projection. However, perfect periodic order is discovered i...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2021-10, Vol.11 (10), p.1238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most quasicrystals can be generated by the cut-and-project method from higher dimensional parent lattices. In doing so they lose the periodic order their parent lattice possess, replaced with aperiodic order, due to the irrationality of the projection. However, perfect periodic order is discovered in the perpendicular space when gluing the cut window boundaries together to form a curved loop. In the case of a 1D quasicrystal projected from a 2D lattice, the irrationally sloped cut region is bounded by two parallel lines. When it is extrinsically curved into a cylinder, a line defect is found on the cylinder. Resolving this geometrical frustration removes the line defect to preserve helical paths on the cylinder. The degree of frustration is determined by the thickness of the cut window or the selected pitch of the helical paths. The frustration can be resolved by applying a shear strain to the cut-region before curving into a cylinder. This demonstrates that resolving the geometrical frustration of a topological change to a cut window can lead to preserved periodic order. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst11101238 |