Recovery facilitated by interphase boundary motion circumvents recrystallization in superalloy single crystals
Dislocation recovery lowering the driving force for recrystallization would be able to suppress the latter in Ni-based superalloy single crystals, but was believed unlikely due to their low stacking-fault energy. Defying this traditional wisdom, here we show that efficient recovery can be realized o...
Gespeichert in:
Veröffentlicht in: | Materials research letters 2024-03, Vol.12 (3), p.180-189 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dislocation recovery lowering the driving force for recrystallization would be able to suppress the latter in Ni-based superalloy single crystals, but was believed unlikely due to their low stacking-fault energy. Defying this traditional wisdom, here we show that efficient recovery can be realized once the γ′-precipitates start to dissolve. Our microscopy evidence tracking the distribution/configuration of dislocations reveals that the shifting γ/γ′ interphase boundaries release the dislocations trapped there, facilitating their annihilation and rearrangement into low-energy network configurations. Our finding explains the success of a recent recovery protocol that kept superalloys as single crystals after supersolvus homogenization heat treatment. |
---|---|
ISSN: | 2166-3831 2166-3831 |
DOI: | 10.1080/21663831.2024.2312146 |