A novel molecular subtypes and risk model based on inflammatory response-related lncrnas for bladder cancer

Background Inflammation and long noncoding RNAs (lncRNAs) are gradually becoming important in the development of bladder cancer (BC). Nevertheless, the potential of inflammatory response-related lncRNAs (IRRlncRNAs) as a prognostic signature remains unexplored in BC. Methods The Cancer Genome Atlas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hereditas 2022-08, Vol.159 (1), p.1-32, Article 32
Hauptverfasser: Tang, Fucai, Zhang, Jiahao, Lu, Zechao, Liao, Haiqin, Hu, Chuxian, Mai, Yuexue, Lai, Yongchang, Lu, Zeguang, Tang, Zhicheng, Li, Zhibiao, He, Zhaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Inflammation and long noncoding RNAs (lncRNAs) are gradually becoming important in the development of bladder cancer (BC). Nevertheless, the potential of inflammatory response-related lncRNAs (IRRlncRNAs) as a prognostic signature remains unexplored in BC. Methods The Cancer Genome Atlas (TCGA) provided RNA expression profiles and clinical information of BC samples, and GSEA Molecular Signatures database provided 1171 inflammation-related genes. IRRlncRNAs were identified using Pearson correlation analysis. After that, consensus clustering was performed to form molecular subtypes. After performing least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses, a risk model constructed based on the prognostic IRRlncRNAs was validated in an independent cohort. Kaplan-Meier (KM) analysis, univariate and multivariate Cox regression, clinical stratification analysis, and time-dependent receiver operating characteristic (ROC) curves were utilized to assess clinical effectiveness and accuracy of the risk model. In clusters and risk model, functional enrichment was investigated using GSEA and GSVA, and immune cell infiltration analysis was demonstrated by ESTIMATE and CIBERSORT analysis. Results A total of 174 prognostic IRRlncRNAs were confirmed, and 406 samples were divided into 2 clusters, with cluster 2 having a significantly inferior prognosis. Moreover, cluster 2 exhibited a higher ESTIMATE score, immune infiltration, and PD-L1 expression, with close relationships with the inflammatory response. Further, 12 IRRlncRNAs were identified and applied to construct the risk model and divide BC samples into low-risk and high-risk groups successfully. KM, ROC, and clinical stratification analysis demonstrated that the risk model performed well in predicting prognosis. The risk score was identified as an independently significant indicator, enriched in immune, cell cycle, and apoptosis-related pathways, and correlated with 9 immune cells. Conclusion We developed an inflammatory response-related subtypes and steady prognostic risk model based on 12 IRRlncRNAs, which was valuable for individual prognostic prediction and stratification and outfitted new insight into inflammatory response in BC. Keywords: Bladder cancer, inflammatory, long noncoding RNA, TCGA, prognosis
ISSN:1601-5223
0018-0661
1601-5223
DOI:10.1186/s41065-022-00245-w