Corrections to holographic entanglement plateau

A bstract We investigate the robustness of the Araki-Lieb inequality in a two-dimensional (2D) conformal field theory (CFT) on torus. The inequality requires that Δ S = S ( L ) − | S ( L − ℓ) − S ( ℓ )| is nonnegative, where S ( L ) is the thermal entropy and S ( L − ℓ ), S ( ℓ ) are the entanglemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2017-09, Vol.2017 (9), p.1-33, Article 151
Hauptverfasser: Chen, Bin, Li, Zhibin, Zhang, Jia-ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We investigate the robustness of the Araki-Lieb inequality in a two-dimensional (2D) conformal field theory (CFT) on torus. The inequality requires that Δ S = S ( L ) − | S ( L − ℓ) − S ( ℓ )| is nonnegative, where S ( L ) is the thermal entropy and S ( L − ℓ ), S ( ℓ ) are the entanglement entropies. Holographically there is an entanglement plateau in the BTZ black hole background, which means that there exists a critical length such that when ℓ ≤ ℓ c the inequality saturates Δ S =0. In thermal AdS background, the holographic entanglement entropy leads to Δ S = 0 for arbitrary ℓ . We compute the next-to-leading order contributions to Δ S in the large central charge CFT at both high and low temperatures. In both cases we show that Δ S is strictly positive except for ℓ = 0 or ℓ = L . This turns out to be true for any 2D CFT. In calculating the single interval entanglement entropy in a thermal state, we develop new techniques to simplify the computation. At a high temperature, we ignore the finite size correction such that the problem is related to the entanglement entropy of double intervals on a complex plane. As a result, we show that the leading contribution from a primary module takes a universal form. At a low temperature, we show that the leading thermal correction to the entanglement entropy from a primary module does not take a universal form, depending on the details of the theory.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2017)151