Biological feasibility of discharge a local WTTP sludge to sewer network and centralized WWTP; a case study: Tehran, Iran

Over the recent years, ever-increasing population growth and higher wastewater production has been a challenge for decentralized wastewater treatment plants (WWTPs). In addition, sludge treatment due to high cost for equipment and place make authorities to find a sustainable approach in both of econ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-04, Vol.14 (1), p.9308-9308, Article 9308
Hauptverfasser: Karami, Samira, Farzadkia, Mahdi, Kermani, Majid, Kalantary, Roshanak Rezaei, Pasalari, Hasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the recent years, ever-increasing population growth and higher wastewater production has been a challenge for decentralized wastewater treatment plants (WWTPs). In addition, sludge treatment due to high cost for equipment and place make authorities to find a sustainable approach in both of economical and technical perspectives. One of the proposed solutions is transferring the sludge produced from decentralized WWTP to centralized WWTP. However, the appropriate proportional ratio of raw sludge to raw sewage is a challenge, otherwise, it make anaerobic conditions and sewage rotting along the sewer network based on permissible limit of dihydrogen sulfide (H 2 S) gas (5 ppm). In the present study, seven reactors with different ratios of sludge to raw sewage (0, 15, 20, 25, 50, 75, 100) were used to stimulate the feasibility of transferring Shahrake Gharb WWTP sludge along the wastewater transfer pipe to the centralized sewage treatment south Tehran WWTP plant in Tehran, Iran. The septic situation and H 2 S emission of different reactors within 7 h (Time to reach the compound in the south treatment plant) was analyzed by gas meter. The results indicated that the optimum ratio of sludge to raw sewage was 15% without H 2 S production during 7 h. In addition, due to the high volume of sludge produced by the Shahrake Gharb WWTP, the optimal ratio of lime to total solids (TS) in sludge (gr/gr) (0.6) increased the sludge loading rate from 15 to 30% without any H 2 S emission during the stimulation study period. Therefore, the lime stabilization and transfer of sludge from a decentralized WWTP to a centralized WWTP is a feasible way to manage the sludge and enhance the treatment capacity in local WWTP.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-58821-1