In Vitro Cytotoxic Evaluation and Apoptotic Effects of Datura innoxia Grown in Saudi Arabia and Phytochemical Analysis
Datura innoxia is an important species of Solanaceae family with several purposes in folk medicine. This study intends to explore the cytotoxic effect of D. innoxia on various cancer cell proliferation. D. innoxia ethanolic extract's effect on the progression of the cell cycle and the induction...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-03, Vol.11 (6), p.2864, Article 2864 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Datura innoxia is an important species of Solanaceae family with several purposes in folk medicine. This study intends to explore the cytotoxic effect of D. innoxia on various cancer cell proliferation. D. innoxia ethanolic extract's effect on the progression of the cell cycle and the induction of apoptosis were investigated by flow cytometry. Further, real-time PCR was employed to confirm apoptosis initiation. In addition, active phytochemicals of D. innoxia was identified by gas chromatography-mass spectroscopy (GC-MS). The cell viability study revealed that the ethanolic extract of D. innoxia demonstrated potent cytotoxicity, with an IC50 value of 10 mu g/mL against LoVo colon cancer cells. Cell cycle staining with propidium iodide revealed that D. innoxia treatment leads to cell accumulation in the sub-G1 phase. Using the Annexin V-FITC/PI assay, the ethanolic extract was found to cause a dose-dependent increase in early and late apoptosis when compared to control cells. Apoptosis as the mode of cell death was also confirmed by the increased expression of p53, bax and caspase-8, -9, and -3 along with downregulation of Bcl-2. GC-MS analysis displayed that 3,5-Dihydroxybenzoic acid (16.53%), heneicosyl formate (14.14%), 2,3-dimethyl-3-pentanol (12.89%), 2-hydroxy-4-methyl pentanoic acid (5.19%) were the main phytoconstituents. These findings conclude that D. innoxia causes cell death through apoptosis, suggesting more attention should be paid to further exploration of the active components from D. innoxia responsible for the observed activities. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11062864 |