Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening

is the main vector of dengue fever transmission, yellow fever, Zika, and chikungunya in tropical and subtropical regions and it is considered to cause health risks to millions of people in the world. In this study, we search to obtain new molecules with insecticidal potential against via virtual scr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2019-01, Vol.12 (1), p.20
Hauptverfasser: Ramos, Ryan da Silva, Costa, Josivan da Silva, Silva, Rai Campos, da Costa, Glauber Vilhena, Rodrigues, Alex Bruno Lobato, Rabelo, Érica de Menezes, Souto, Raimundo Nonato Picanço, Taft, Carlton Anthony, Silva, Carlos Henrique Tomich de Paula da, Rosa, Joaquín Maria Campos, Santos, Cleydson Breno Rodrigues Dos, Macêdo, Williams Jorge da Cruz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:is the main vector of dengue fever transmission, yellow fever, Zika, and chikungunya in tropical and subtropical regions and it is considered to cause health risks to millions of people in the world. In this study, we search to obtain new molecules with insecticidal potential against via virtual screening. Pyriproxyfen was chosen as a template compound to search molecules in the database Zinc_Natural_Stock (ZNSt) with structural similarity using ROCS (rapid overlay of chemical structures) and EON (electrostatic similarity) software, and in the final search, the top 100 were selected. Subsequently, in silico pharmacokinetic and toxicological properties were determined resulting in a total of 14 molecules, and these were submitted to the PASS online server for the prediction of biological insecticide and acetylcholinesterase activities, and only two selected molecules followed for the molecular docking study to evaluate the binding free energy and interaction mode. After these procedures were performed, toxicity risk assessment such as LD values in mg/kg and toxicity class using the PROTOX online server, were undertaken. Molecule ZINC00001624 presented potential for inhibition for the acetylcholinesterase enzyme (insect and human) with a binding affinity value of -10.5 and -10.3 kcal/mol, respectively. The interaction with the juvenile hormone was -11.4 kcal/mol for the molecule ZINC00001021. Molecules ZINC00001021 and ZINC00001624 had excellent predictions in all the steps of the study and may be indicated as the most promising molecules resulting from the virtual screening of new insecticidal agents.
ISSN:1424-8247
1424-8247
DOI:10.3390/ph12010020