Linking pollution and cancer in aquatic environments: A review
•We assembled all cancer occurrences in aquatic and semi-aquatic animal species.•In 30 studies, cancer was linked to habitat pollution.•Based on this overview, we describe cancer vulnerability of different animal groups.•We point out biases, research gaps, and future directions in this field. Due to...
Gespeichert in:
Veröffentlicht in: | Environment international 2021-04, Vol.149, p.106391, Article 106391 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •We assembled all cancer occurrences in aquatic and semi-aquatic animal species.•In 30 studies, cancer was linked to habitat pollution.•Based on this overview, we describe cancer vulnerability of different animal groups.•We point out biases, research gaps, and future directions in this field.
Due to the interconnectedness of aquatic ecosystems through the highly effective marine and atmospheric transport routes, all aquatic ecosystems are potentially vulnerable to pollution. Whilst links between pollution and increased mortality of wild animals have now been firmly established, the next steps should be to focus on specific physiological pathways and pathologies that link pollution to wildlife health deterioration. One of the pollution-induced pathologies that should be at the centre of attention in ecological and evolutionary research is cancer, as anthropogenic contamination has resulted in a rapid increase of oncogenic substances in natural habitats. Whilst wildlife cancer research is an emerging research topic, systematic reviews of the many case studies published over the recent decades are scarce. This research direction would (1) provide a better understanding of the physiological mechanisms connecting anthropogenic pollution to oncogenic processes in non-model organisms (reducing the current bias towards human and lab-animal studies in cancer research), and (2) allow us to better predict the vulnerability of different wild populations to oncogenic contamination. This article combines the information available within the scientific literature about cancer occurrences in aquatic and semi-aquatic species. For the first aim, we use available knowledge from aquatic species to suggest physiological mechanisms that link pollution and cancer, including main metabolic detoxification pathways, oxidative damage effects, infections, and changes to the microbiome. For the second aim, we determine which types of aquatic animals are more vulnerable to pollution-induced cancer, which types of pollution are mainly associated with cancer in aquatic ecosystems, and which types of cancer pollution causes. We also discuss the role of migration in exposing aquatic and semi-aquatic animals to different oncogenic pollutants. Finally, we suggest novel research avenues, including experimental approaches, analysis of the effects of pollutant cocktails and long-term chronic exposure to lower levels of pollutants, and the use of already published databases of gene expression le |
---|---|
ISSN: | 0160-4120 1873-6750 |
DOI: | 10.1016/j.envint.2021.106391 |