A Deep Learning Approach for Kidney Disease Recognition and Prediction through Image Processing

Chronic kidney disease (CKD) is a gradual decline in renal function that can lead to kidney damage or failure. As the disease progresses, it becomes harder to diagnose. Using routine doctor consultation data to evaluate various stages of CKD could aid in early detection and prompt intervention. To t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-03, Vol.13 (6), p.3621
Hauptverfasser: Kumar, Kailash, Pradeepa, M, Mahdal, Miroslav, Verma, Shikha, RajaRao, M. V. L. N, Ramesh, Janjhyam Venkata Naga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic kidney disease (CKD) is a gradual decline in renal function that can lead to kidney damage or failure. As the disease progresses, it becomes harder to diagnose. Using routine doctor consultation data to evaluate various stages of CKD could aid in early detection and prompt intervention. To this end, researchers propose a strategy for categorizing CKD using an optimization technique inspired by the learning process. Artificial intelligence has the potential to make many things in the world seem possible, even causing surprise with its capabilities. Some doctors are looking forward to advancements in technology that can scan a patient’s body and analyse their diseases. In this regard, advanced machine learning algorithms have been developed to detect the presence of kidney disease. This research presents a novel deep learning model, which combines a fuzzy deep neural network, for the recognition and prediction of kidney disease. The results show that the proposed model has an accuracy of 99.23%, which is better than existing methods. Furthermore, the accuracy of detecting chronic disease can be confirmed without doctor involvement as future work. Compared to existing information mining classifications, the proposed approach shows improved accuracy in classification, precision, F-measure, and sensitivity metrics.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13063621