The Connection between the PQ Penny Flip Game and the Dihedral Groups

This paper is inspired by the PQ penny flip game. It employs group-theoretic concepts to study the original game and its possible extensions. In this paper, it is shown that the PQ penny flip game can be associated, in a precise way, with the dihedral group D8 and that within D8 there exist precisel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-05, Vol.9 (10), p.1115
Hauptverfasser: Andronikos, Theodore, Sirokofskich, Alla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is inspired by the PQ penny flip game. It employs group-theoretic concepts to study the original game and its possible extensions. In this paper, it is shown that the PQ penny flip game can be associated, in a precise way, with the dihedral group D8 and that within D8 there exist precisely two classes of equivalent winning strategies for Q. This is achieved by proving that there are exactly two different sequences of states that can guarantee Q’s win with probability 1.0. It is demonstrated that the game can be played in every dihedral group D8n, where n≥1, without any significant change. A formal examination of what happens when Q can draw their moves from the entire U(2), leads to the conclusion that, again, there are exactly two classes of winning strategies for Q, each class containing an infinite number of equivalent strategies, but all of them sending the coin through the same sequence of states as before. Finally, when general extensions of the game, with the quantum player having U(2) at their disposal, are considered, a necessary and sufficient condition for Q to surely win against Picard is established: Q must make both the first and the last move in the game.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9101115