Feedback-based quantum algorithm inspired by counterdiabatic driving
In recent quantum algorithmic developments, a feedback-based approach has shown promise for preparing quantum many-body system ground states and solving combinatorial optimization problems. This method utilizes quantum Lyapunov control to iteratively construct quantum circuits. Here, we propose a su...
Gespeichert in:
Veröffentlicht in: | Physical review research 2024-10, Vol.6 (4), p.043068, Article 043068 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent quantum algorithmic developments, a feedback-based approach has shown promise for preparing quantum many-body system ground states and solving combinatorial optimization problems. This method utilizes quantum Lyapunov control to iteratively construct quantum circuits. Here, we propose a substantial enhancement by implementing a protocol that uses ideas from quantum Lyapunov control and the counterdiabatic driving protocol, a key concept from quantum adiabaticity. Our approach introduces an additional control field inspired by counterdiabatic driving. We apply our algorithm to prepare ground states in one-dimensional quantum Ising spin chains. Comprehensive simulations demonstrate a remarkable acceleration in population transfer to low-energy states within a significantly reduced time frame compared to conventional feedback-based quantum algorithms. This acceleration translates to a reduced quantum circuit depth, a critical metric for potential quantum computer implementation. We validate our algorithm on the IBM cloud computer, highlighting its efficacy in expediting quantum computations for many-body systems and combinatorial optimization problems. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.6.043068 |