Structural Evolution of Nano-sized Oxide Particles Formed in Mechanically Alloyed Fe-10Cr-5Y2O3 Powders

Fe-10Cr-5Y2O3 powders were mechanically alloyed using a high energy horizontal ball-mill apparatus, and the effect of heat treatment on the behavior of nano-sized oxide particles formed in the mechanically alloyed Fe-10Cr-5Y2O3 powders was investigated. Elongated Cr-rich and Y-rich oxides were obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2020-03, Vol.10 (3), p.310
Hauptverfasser: Kim, Ga Eon, Kim, Tae Kyu, Noh, Sanghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fe-10Cr-5Y2O3 powders were mechanically alloyed using a high energy horizontal ball-mill apparatus, and the effect of heat treatment on the behavior of nano-sized oxide particles formed in the mechanically alloyed Fe-10Cr-5Y2O3 powders was investigated. Elongated Cr-rich and Y-rich oxides were observed in the mechanically alloyed powders. During the heating of these powders above 700 °C, the elongated Cr-rich oxides were dramatically changed to a near- spherical morphology. Cubic-Y2O3, monoclinic-Y2O3 and YFeO3 phases were also found after heat treatment at 1150 °C for 1h, indicating that the Y-rich oxide phase was transformed to the cubic-Y2O3, monoclinic-Y2O3 and YFeO3 ones. It is thus concluded that both a morphological change of Cr-rich oxide and a phase transformation of Y-rich oxide during the heating of mechanically alloyed powders could be mainly attributed to extremely high energy, accumulated by the mechanical alloying process.
ISSN:2075-4701
2075-4701
DOI:10.3390/met10030310