A Real-Time Lightweight Detection Algorithm for Deck Crew and the Use of Fishing Nets Based on Improved YOLOv5s Network
A real-time monitoring system for the operational status of fishing vessels is an essential element for the modernization of the fishing industry. The operational status of fishing vessels can be identified by using onboard cameras to detect the deck crew and the use of fishing nets. Due to the typi...
Gespeichert in:
Veröffentlicht in: | Fishes 2023-07, Vol.8 (7), p.376 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A real-time monitoring system for the operational status of fishing vessels is an essential element for the modernization of the fishing industry. The operational status of fishing vessels can be identified by using onboard cameras to detect the deck crew and the use of fishing nets. Due to the typically limited processing capacity of shipboard equipment and the significant memory consumption of detection models, general target detection models are unable to perform real-time image detection to identify the operational status of fishing vessels. In this paper, we propose a lightweight real-time deck crew and the use of a fishing net detection method, YOLOv5s-SGC. It is based on the YOLOv5s model, which uses surveillance cameras to obtain video of fishing vessels operating at sea and enhances the dataset. YOLOv5s-SGC replaces the backbone of YOLOv5s with ShuffleNetV2, replaces the feature fusion network with a modified Generalized-FPN, and adds the CBAM attention module in front of the detection head. |
---|---|
ISSN: | 2410-3888 2410-3888 |
DOI: | 10.3390/fishes8070376 |