Discrete-Time Sliding Mode Control Coupled with Asynchronous Sensor Fusion for Rigid-Link Flexible-Joint Manipulators
This paper proposes a novel discrete-time terminal sliding mode controller (DTSMC) coupled with an asynchronous multirate sensor fusion estimator for rigid-link flexible-joint (RLFJ) manipulator tracking control. A camera is employed as external sensors to observe the RLFJ manipulator’s state which...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel discrete-time terminal sliding mode controller (DTSMC) coupled with an asynchronous multirate sensor fusion estimator for rigid-link flexible-joint (RLFJ) manipulator tracking control. A camera is employed as external sensors to observe the RLFJ manipulator’s state which cannot be directly obtained from the encoders since gear mechanisms or flexible joints exist. The extended Kalman filter- (EKF-) based asynchronous multirate sensor fusion method deals with the slow sampling rate and the latency of camera by using motor encoders to cover the missing information between two visual samples. In the proposed control scheme, a novel sliding mode surface is presented by taking advantage of both the estimation error and tracking error. It is proved that the proposed controller achieves convergence results for tracking control in the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/9927850 |