Tungsten oxide-Au nanosized film composites forglucose oxidation and sensing in neutral medium
Maxime Gougis, Dongling Ma, Mohamed Mohamedi INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada Abstract: In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/A...
Gespeichert in:
Veröffentlicht in: | International journal of nanomedicine 2015-04, Vol.2015 (default), p.2939-2950 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maxime Gougis, Dongling Ma, Mohamed Mohamedi INRS-Énergie, Matériaux et Télécommunications, Varennes, Québec, Canada Abstract: In this work, we report for the first time the use of tungsten oxide (WOx) as catalyst support for Au toward the direct electrooxidation of glucose. The nanostructured WOx/Au electrodes were synthesized by means of laser-ablation technique. Both micro-Raman spectroscopy and transmission electron microscopy showed that the produced WOx thin film is amorphous and made of ultrafine particles of subnanometer size. X-ray diffraction and X-ray photoelectron spectroscopy revealed that only metallic Au was present at the surface of the WOx/Au composite, suggesting that the WOx support did not alter the electronic structure of Au. The direct electrocatalytic oxidation of glucose in neutral medium such as phosphate buffered saline (pH 7.2) solution has been investigated with cyclic voltammetry, chronoamperometry, and square-wave voltammetry. Sensitivity as high as 65.7 µA cm-2 mM-1 up to 10 mM of glucose and a low detection limit of 10 µM were obtained with square-wave voltammetry. This interesting analytical performance makes the laser-fabricated WOx/Au electrode potentially promising for implantable glucose fuel cells and biomedical analysis as the evaluation of glucose concentration in biological fluids. Finally, owing to its unique capabilities proven in this work, it is anticipated that the laser-ablation technique will develop as a fabrication tool for chip miniature-sized sensors in the near future. Keywords: Au, tungsten oxide, nanostructures, pulsed laser deposition, glucose oxidation and sensing |
---|---|
ISSN: | 1178-2013 |