Pathophysiological potential of lipid hydroperoxide intermembrane translocation: Cholesterol hydroperoxide translocation as a special case

Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Redox biology 2021-10, Vol.46, p.102096, Article 102096
Hauptverfasser: Girotti, Albert W., Korytowski, Witold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peroxidation of unsaturated phospholipids, glycolipids, and cholesterol in biological membranes under oxidative stress conditions can underlie a variety of pathological conditions, including atherogenesis, neurodegeneration, and carcinogenesis. Lipid hydroperoxides (LOOHs) are key intermediates in the peroxidative process. Nascent LOOHs may either undergo one-electron reduction to exacerbate membrane damage/dysfunction or two-electron reduction to attenuate this. Another possibility is LOOH translocation to an acceptor site, followed by either of these competing reductions. Cholesterol (Ch)-derived hydroperoxides (ChOOHs) have several special features that will be highlighted in this review. In addition to being susceptible to one-electron vs. two-electron reduction, ChOOHs can translocate from a membrane of origin to another membrane, where such turnover may ensue. Intracellular StAR family proteins have been shown to deliver not only Ch to mitochondria, but also ChOOHs. StAR-mediated transfer of free radical-generated 7-hydroperoxycholesterol (7-OOH) results in impairment of (a) Ch utilization in steroidogenic cells, and (b) anti-atherogenic reverse Ch transport in vascular macrophages. This is the first known example of how a peroxide derivative can be recognized by a natural lipid trafficking pathway with deleterious consequences. For each example above, we will discuss the underlying mechanism of oxidative damage/dysfunction, and how this might be mitigated by antioxidant intervention. [Display omitted] •Lipid peroxidation underlies many pathological conditions associated with oxidative stress.•The cholesterol-derived hydroperoxides, 7α/β-OOH, are key peroxidation intermediates.•7α/β-OOH-transfer to mitochondria is accelerated by StAR proteins.•Damage from 7α/β-OOH transfer impairs steroid synthesis and cholesterol homeostasis.
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2021.102096