Manufacturing Methods Induced Property Variations in Ti6Al4V Using High-Speed Machining and Additive Manufacturing (AM)
Additive manufacturing techniques are replacing conventional subtractive machining processes; however, the surface quality and defects have been a key roadblock to expanding AM’s uses. This paper describes experimental investigations in the high-speed dry machining and additive manufacturing (AM) of...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2023-01, Vol.13 (2), p.287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Additive manufacturing techniques are replacing conventional subtractive machining processes; however, the surface quality and defects have been a key roadblock to expanding AM’s uses. This paper describes experimental investigations in the high-speed dry machining and additive manufacturing (AM) of titanium alloy (Ti6Al4V), discussing the effect of machining and AM conditions on the surface characteristics due to the micro-deformation layer. Analysis of the machined surfaces shows the deposition of microparticles at a high cutting speed of 170 m/min at moderate feed rates. The predominant thermal softening effect at a high cutting speed causes restructuring of the micro-deformation layer. Thus, the machined surface shows fewer alterations and a correspondingly lower surface roughness. A high cutting speed also favors the induction of high residual stresses that are compressive. Shallow grooves are seen throughout the surface along the feed spacing with a higher depth of cut of 0.8 mm. An increase in the cutting speed from 170 m/min to 190 m/min leads to a 61% increase in the surface finish owing to a rise in machining temperature leading to thermal softening, and subsequent restructuring of the machined surface layer occurs. For the feed rate, the surface finish values decrease gradually as the feed rate increases, and the worst finish of 1.37 µm is attained at a feed rate of 0.875 mm/rev. This study also compares different AM processes for Ti6Al4V based on the defects and their effects on mechanical properties, such as tensile and fatigue strength. It was observed that the ultimate tensile strength and the yield strength were approximately 20% more in SLM and direct energy deposition as compared to electron beam melting. The mechanism of these effects is also explained by elaborating on the influence of grain size, phase, and other microstructural behaviors on the final mechanical properties of the produced part. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met13020287 |