Smad2/3/4 complex could undergo liquid liquid phase separation and induce apoptosis through TAT in hepatocellular carcinoma

Hepatocellular carcinoma (HCC) represents one of the most significant causes of mortality due to cancer-related deaths. It has been previously reported that the TGF-β signaling pathway may be associated with tumor progression. However, the relationship between TGF-β signaling pathway and HCC remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Cell International 2024-05, Vol.24 (1), p.176-176, Article 176
Hauptverfasser: Li, Jiong, Wang, Wendi, Li, Sang, Qiao, Zhengkang, Jiang, Haoyue, Chang, Xinyue, Zhu, Yaning, Tan, Hongpei, Ma, Xiaoqian, Dong, Yuqian, He, Zhenhu, Wang, Zhen, Liu, Qin, Yao, Shanhu, Yang, Cejun, Yang, Min, Cao, Lu, Zhang, Juan, Li, Wei, Wang, Wei, Yang, Zhe, Rong, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatocellular carcinoma (HCC) represents one of the most significant causes of mortality due to cancer-related deaths. It has been previously reported that the TGF-β signaling pathway may be associated with tumor progression. However, the relationship between TGF-β signaling pathway and HCC remains to be further elucidated. The objective of our research was to investigate the impact of TGF-β signaling pathway on HCC progression as well as the potential regulatory mechanism involved. We conducted a series of bioinformatics analyses to screen and filter the most relevant hub genes associated with HCC. E. coli was utilized to express recombinant protein, and the Ni-NTA column was employed for purification of the target protein. Liquid liquid phase separation (LLPS) of protein in vitro, and fluorescent recovery after photobleaching (FRAP) were utilized to verify whether the target proteins had the ability to drive force LLPS. Western blot and quantitative real-time polymerase chain reaction (qPCR) were utilized to assess gene expression levels. Transcription factor binding sites of DNA were identified by chromatin immunoprecipitation (CHIP) qPCR. Flow cytometry was employed to examine cell apoptosis. Knockdown of target genes was achieved through shRNA. Cell Counting Kit-8 (CCK-8), colony formation assays, and nude mice tumor transplantation were utilized to test cell proliferation ability in vitro and in vivo. We found that Smad2/3/4 complex could regulate tyrosine aminotransferase (TAT) expression, and this regulation could relate to LLPS. CHIP qPCR results showed that the key targeted DNA binding site of Smad2/3/4 complex in TAT promoter region is -1032 to -1182. In addition. CCK-8, colony formation, and nude mice tumor transplantation assays showed that Smad2/3/4 complex could repress cell proliferation through TAT. Flow cytometry assay results showed that Smad2/3/4 complex could increase the apoptosis of hepatoma cells. Western blot results showed that Smad2/3/4 complex would active caspase-9 through TAT, which uncovered the mechanism of Smad2/3/4 complex inducing hepatoma cell apoptosis. This study proved that Smad2/3/4 complex could undergo LLPS to active TAT transcription, then active caspase-9 to induce hepatoma cell apoptosis in inhibiting HCC progress. The research further elucidate the relationship between TGF-β signaling pathway and HCC, which contributes to discover the mechanism of HCC development.
ISSN:1475-2867
1475-2867
DOI:10.1186/s12935-024-03353-x